PHYSICAL CHEMISTRY

DPP No. 3

Total Marks: 41

Max. Time: 43 min.

Topic: Mole Concept

Type of Questions Single choice Objective ('-1'negative marking)Q.1,2,4 to 9,11,12 (3 marks, 3 min.) Short Subjective Questions ('-1' negative marking) Q.10 (3 marks, 3 min.) Match the Following (no negative marking) (2 × 4) Q.3 (8 marks, 10 min.)					M.M., Min. [30, 30] [3, 3] [8, 10]
1.	Number of gold atoms i (A) 4.5×10^{20}	n 300 mg of a gold ring o (B) 6.8 × 10¹⁵	of 20 carat gold (C) 7.6 × 10 ²⁰	(pure gold is 24 carat) are (D) 9.5 × 10 ²⁰	e:
2.		g 64 g Oxygen, 11.2 L O s of the oxygen gas left : (B) 32 g	xygen gas at S (C) 16 g	S.T.P. and 6.022 × 10 ²³ Ox (D) none	ygen atoms are
3.	Column-I (A) 32 g each of O ₂ and S (B) 2 gram-molecules of K ₃ [Fe(CN) ₆] (C) 144 g of Oxygen atom (D) From 168 g of iron, 6.022 × 10 ²³ atoms of iron are removed, then the iron left		Column-II (p) 2 moles of Fe (q) 3 moles of ozone molecule (r) one mole of given unit (s) 12 moles of carbon atoms		
4.	If a sample of Ferric sulp given sample are : (A) 1.8 N _A	phate $Fe_2(SO_4)_3$ contains (B) 1.2 N_A	7.2 moles of O	-atoms, then the number of (D) 1.4 $\rm N_{_{\rm A}}$	of S-atoms in the
5.	10 moles of CO_2 do not contain : (A) 120 g of C (B) 6.022×10^{24} atoms of O (C) 10 N_A molecules of CO_2 (D) 20 gram-atoms of O.				
6.	A compound has the mo	olecular formula X ₄ O ₆ . If (B) 37 amu	11 g of X ₄ O ₆ I (C) 42 amu	has 6.2 g of X, then atom (D) 98 amu	ic mass of X is :
7.		s Ca = 40%, C = 12% and Ca in 5 g of CaCO ₃ from (B) 0.2 g		mass. If the law of consta e will be: (D) 20 g	nt proportions is
8.	In compound A, 1 g nitrogen combine with 0.57 g oxygen. In compound B, 2 g nitrogen combine with 2.28 g oxygen and in compound C, 3 g nitrogen combine with 5.13 g oxygen. These results obey the law of: (A) multiple proportions (B) constant proportions (C) mixed proportions (D) none of these				
9.	The respective ratio of same mass of copper, i (A) 1:2		ples of pure Cu (C) 2 : 1	uO and Cu ₂ O, if both sam (D) none of the	
10.	Find the relative density of SO ₃ gas with respect to methane.				
11.	(A) 143	P is 0.001287 g mL ⁻¹ . Its (B) 14.3 ensity of hydrogen at ST	(C) 1.43	(D) 0.143	
12.	The atomic mass of a metal is 27. If its valency is 3, the vapour density of the volatile metal chloride will be: (A) 66.75 (B) 6.675 (C) 667.5 (D) 81				

Answer Kev

DPP No. #3

1. (C) (B)

3.

4.

5.

(A) (B)

(A)

7. (A) 8.

(A)

9. (C)

10.

11.

(B)

12.

(A)

Hints & Solutions

DPP No. #3

1. For 24 carat, no of gold atoms =
$$\frac{300 \times 10^{-3}}{197} \times N_A$$

For 20 carat, no of gold atoms
$$= \frac{300 \times 10^{-3}}{197} \times \frac{20 \times N_A}{24}$$
$$= 7.64 \times 10^{20} \text{ UVTHIO}$$

2. Removed mass =
$$\frac{11.2}{22.4} \times 32 + \frac{6.02 \times 10^{23}}{6.02 \times 10^{23}} \times 16 = 32 \text{ g}$$

mass left = $64 - 32 = 32 \text{ g}$.

3. (A) 32 g each of
$$O_2$$
 and $S = \frac{32}{32} = 1$ mole

(C) 144 g of oxygen atom =
$$\frac{144}{16}$$
 = 9 mole of 'O' atom; \therefore Moles of O₃ = $\frac{9}{3}$ = 3

$$\therefore \qquad \text{Moles of O}_3 = \frac{9}{3} = 3$$

(D) from 168 g i.e. 3 moles Fe ⇒ 1 mole Fe is removed i.e. ⇒ 2 moles of Fe is left.

Moles of S- atoms =
$$\frac{3}{12} \times 7.2 = 1.8$$

$$= 2 \times 10$$

$$= 20 = g - atoms of O.$$

No. of O- atoms =
$$20 \times N_A = 1.2044 \times 10^{25}$$

No. of molecules of
$$CO_2 = Moles of CO_2 \times N_A = 10 \times N_A$$

$$\therefore 10 \text{ g X}_4\text{O}_6 \text{ has} - \left(\frac{4a \times 10}{4a + 96}\right) \text{g X}$$

$$\frac{4a \times 10}{4a + 96} = 5.72$$

7. Mass of Ca =
$$5 \times \frac{40}{100} = 2g$$
.

8. N
$$\rightarrow$$
 1g 2g 3g O \rightarrow 0.57g 2.24g 5.11g

$$O \rightarrow \frac{0.57}{1} = \frac{2.24}{2} g = \frac{5.11}{3} g$$

$$O \rightarrow \quad \frac{0.57}{1} \quad \frac{0.57 \times 2}{1} \quad \frac{0.57 \times 3}{1}$$

So, the mass ratio of oxygen combined with 1 g of nitrogen is simple ratio 1,2,3.

10. R.D. =
$$\frac{M_{SO_3}}{M_{CH_4}} = \frac{80}{16} = 5$$
.

so V.D. =
$$\frac{28.7}{2} \approx 14.3$$

12. Element must be Al

Hence, volatile chloride will be AICI₃ so V.D. =
$$\frac{M_{AICI_3}}{2} = \frac{133.5}{2} = 66.75$$

